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Abstract. In this comment we discuss transport equations on a curved interface which is 
semipermeable. The moving interface has finite thickness and seprates two media with 
different physical properties. We introduce a thermodynamical field theory with the material 
properties of such an inhomogeneous system. 

There exist in the literature many studies of the description of shells as a material 
body. Here we give two extensions: first, that the surface geometry is time dependent; 
and second that the thin region is semipermeable and therefore in material and heat 
exchange with the surrounding media. Furthermore, the temperature as an additional 
field is taken into account. 

We consider a moving three-dimensional region embedded in and interacting with 
a three-dimensional continuum where one dimension of the moving region is much 
smaller than the other two (interface with finite thickness). The balance equations 
together with the constituent equations represent field equations for the thermodynami- 
cal fields. Mathematically speaking, the equations form a closed set of boundary 
conditions for moving boundaries. 

We consider a body 2(t) with the volume V ( t ) .  We assume that this volume is 
divided into the volumes V+( t )  and V-( t )  by a thin region of parallel surfaces with 
body b( t )  and volume V( t ) .  The volume V( t )  = V'( t )  U V-( t )  u V( t )  is bounded by 

a V( t ) = a V+(  t ) U a V-( t ) U R( t ). 

Let 9 be an additive property of V ( t )  and ZIr, the amount of ZIr in a partial volume v 
of V ( t ) .  is given by 

9" = $(xi, t )  d.r I, 
where $(xi, t )  is the density of 9". Let us assume that (1) holds for every partial 
volume of V ( t ) ,  moreover we assume additivity of (1) to obtain the total amount of 
9 of V ( t ) .  V ( t )  is bounded by the curved surface Z(*l)(t), I ; ' 5 2 ' ( t )  and the lateral 
surface R. 

We consider a smooth surface Z ( t )  in the Euclidean space E 3  with orthonormal 
base vectors b,, i = 1,2,3,  where the position vector r of any point P( U', U*, t )  on the 
moving surface is given by Z(O)(t) :  

r = b,x' where x i  = x ' ( u A ,  t )  and A = 1,2. (2) 
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The u A  are curvilinear coordinates on C(O)( t )  called surface coordinates and t represents 
time. Throughout we use covariant notation and summation convention. The quantity 
d r  on P ( u ' ,  u 2 ,  t )  directed tangentially to the u B  coordinate curve is 

ar  
d r = T d u B  

a u  

or in components 

dx' = x ' , B  d U B  

( 3 )  

( 4 )  

where the quantities xi,B are components in space directed tangentially to the surface 
coordinates U ' ,  u 2 .  The square of length of arc on C( t )  is given by (ds)2 = g,, dx' Odx' 
and with ( 4 )  it follows that 

(ds )2= gAB d u A O d u B  ( 5 )  

where gAB = g,X',A@x',B is the metric tensor on X ( t )  and g ,  = 6 ,  in space E 3  where 
0 means tensor product. The normal vector perpendicular to X ( t )  has the rep- 
resentation 

(6) e, = T E  E ~ ~ ~ x ~ , A O X ~ , B  

b A B = - X ' , A O e I , B = e , O x ' , A ~ .  ( 7 )  

1 AB 

where e'e, = 1 and e,x',,  = 0 at all times t. The curvature tensor bAB is given by definition 

Let us denote by E(('( t )  the surface, smooth by hypothesis, obtained by laying off 
equal distances 5 along the normal e' to ZCO)( t )  and C'5'( t )  is laid to be parallel to the 
surface C(O'( t ) .  XCs'( t )  is determined by 

(8) t ) :  R = r + @,e' 

where R is the position of any point on the surface E(')(t) and r is defined by ( 2 ) .  
Written in components we have 

K '  = x ' ( u A ,  t ) + t e ' ( u A ,  t ) .  (9) 

Formally 5 E [ 5, , &I, where el and t2 are finite distances from the middle surface at 
5 = 0. With foregoing conventions we have 

K ' , A  = x ' , ~  + 5 e',A = ( 6 ;  - [bAB)X1,A 

G A B  = ( 1 - t 2 k G ) g A B  -2!$(1 - t k M  ) b A B  ( 1 1 )  

BAC =&kGgAC+(1+6kM)bAC ( 1 2 )  

( 1 0 )  

and the metric and curvature tensor at any parallel surface is given by 

and 

where kM and kG are the mean and the Gaussian curvature of b A B .  The determinant 
of the expression in front of x ' , ~  in ( l o )  can be written in terms of kM and kG as 

F (  5) = 1 - 2 5 k ~  -k t 2 k G .  ( 1 3 )  

The rate of change of 9 in V ( t )  is given by 

( 1 4 )  _- d* - -a)(*) + P(*) + S(*)  
d t  
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where @(9) is the flux through the surface a V = Z'51'u X's2'u R. P ( 9 )  is a production 
term 

P ( 9 )  = lv P d r  

and  represents the production of 9 in V, for example the mass production in V via 
chemical reactions, and  

S ( 9 )  = Iv S d r  

la, " r ) J  dA (17) 

(16) 

is the supply of 9, for example by radiation, in the volume V from outside of the 
volume V. P and S are densities, namely the production density and  the density of 
supply. The flux @(9) consists of two parts, namely a convection flux 6(9) and a 
non-convective part 

where @' is the density of the non-convective flux through a V ,  d A  is a surface element 
of d V and r)J are the covariant components of a surface vector perpendicular to d V. 

In the following formulae vJ is the velocity in the volume V ( t ) ,  kJ  the velocity of 
the surface d V (  t ) ,  w,  the velocity parallel to e' and t iA  are the components of a velocity 
in the lateral surface O( t ) .  Now we obtain from (14) the generalised transport equation 

dr+s+(g/2g)47 + w ~ , A + ~ + ( + , # ~ + @ ~ + ~ ~ ) , A + u F ( s ) { + ( u ~ - c ~ ~ )  ej +oJ e,>] = P + S  

(18) 

which is valid for all points of the interfacial region. The quantity 6 = t2 - 6, is the 
thickness of the interfacial region and the other quantities are defined as follows. 

The mean value of the density field in V ( t ) :  

The vector-valued surface quantity: 

9; = -js; ( E A B ( 6 ) ( L . B +  D A B ( 6 ) , B + ) 6  d6- 

The non-convective flux through the lateral surface R( t ) :  

Q A = x J , B  @'DE"(() d t .  

The convective flux through Cl( t ) :  

& A  = j(; ( L { D " " ( s ) ( ~ , x ' , ~  + S W ~ , B ) - F ( S ) U ~ ( L >  d t .  

The production density in V ( t ) :  
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The density of supply from the region outside of V ( t )  into V ( t ) :  

Also 

The notation 1.1 is introduced as the jump of a physical quantity $ on any thin region 
and is defined by 

(28) 

where $ I e 2  is the value of the field quantity $( U", 5, t )  for 5 = t2 .  F (  and F (  t2) are 
limit values of F ( 5 )  on X('I)( t )  and X(':)( t ) .  Equation (18) represents the generalised 
transport equation which is valid for interfacial regions of finite thickness 5 = t2 - 5,. 
We obtain equations of balance if we identify the quantities in (18) with the fields in 
the interfacial region (Grauel 1982a, b, 1987). 

Now let us study the limiting behaviour of (19)-(27). To that end we consider a 
thin region between two of the surfaces X( ' l ) ( f )  and X(*2)(f) of constant thickness E 

and we set 5, = - ;E  and t2 = $ E .  We assume the following. 
(i)  The surface field ++(uA,  t )  is given by definition 

UF(5)ILlI = F ( 5 2 ) 4 * :  - F(SI)$/C, 

and +-(U", t )  by an analogous definition. 
(ii) The limits of integrals over fields exist and are non-vanishing smooth functions 

of the coordinates u A  and time t. Let G(u", 5, t )  be a scalar-valued function. Then 
E r 2  

g ( u A ,  t )  = lim e - t O  [ - E , 2  G ( U A ,  5, t )  d 5  (30) 

is the scalar-valued field on the surface or interface. Similarly we introduce vector- 
valued functions on surfaces and interfaces by 

The limiting values of the surface quantities (17) ,  (26) and (27) are F ( 0 )  = 1, DAB(0)  = 
gAB, E A B ( 0 )  = 0 and 

lim J 
r-.O - c / 2  

t p h ( u A ,  5, t )  d 5 = 0  

where p > 0. 
Therefore $ p = O  and (22) takes on the form 

& A  = lim / E ' 2  F ( ( ) $ ( u " ,  5, t ) ( v " - U " )  d5. 
F - o  --E/2 
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By definition the velocity field t i A  is introduced into the theory independently of certain 
motion of particles on the surface X‘O) and therefore ( P A  represents a diffusion of 
particles on the surface if we identify + ( u A ,  6, t )  with the density of mass. If the 
diffusion flux & A  on the surface is zero we obtain an expression of the velocity field 

E / 2  

= Iim f’O m ) + ( u A ,  5, ? ) U A  d5 (33) 

where 
E / 2  

t )  = Iim E’o [-f,* F ( S ) + ( u A ,  5, t )  d5. 

Equation (18) in the limit E + 0 has the following form: 

g 
2 g  

a,+, + - +, + ( +,w A + a.”) , A  + [ +( U’ - w‘ ) e, + .\II,~,] = 7~ + cr 
where 

E / 2  

Q A ( u A ,  t )=:  xp ,BgAB lim 5 F ( 5 ) Q P ( u A ,  6, t) d5 
E’O --E/2 

(34) 

Equation (34) takes on the same form which we have given in previous papers (Grauel 
1980, 1982a, b). With the definitions in those papers for a mixture of 6 = 1 , .  . . , A 
chemically reacting fluids we obtain the equations of balance of mass, momentum and 
internal energy in the following form: 

+ [ p ( E + f ( v k -  w k ) ) ’ ) ( u ’ -  w~h)  e,+qJe, - t k ’ (uk-wk)eJ]  

= ,i Y s ( m G + r , s )  
S = l  

where [ . ] represents the jump of a physical quantity on the surface or interface and 
(+ runs over different values for the bulk media outside the interface. U:  = w: - w k  is 
the diffusive velocity in the mixture. 

For the entropy we assume the following. 
(i) On the interface exists an additive quantity called the interface entropy 77 which 

(37)  

is balanced according to (34) by 

a I ( Y T c ) +  ( g / 2 g ) y 7 s  + ( ~ T c I F ~ ~ + @ ~ ) , A +  [ p T ( u ’  - wJh)+@’l e, - Y(+n, = r,\ 
where r,,, is the production of entropy. 
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(ii) For each thermodynamic process on the interface the production of entropy 
T,! shall not be negative; therefore we have 

T,, 3 0 (38) 

or 

where the specific supply of entropy ya,, on the interface is given by the supplies of 
momentum and internal energy. 

The balance equations together with the entropy balance (39) describe the interac- 
tion of the embedded surface in the bulk phases correctly. If we supplement constituent 
equations for the constituent quantities z,, T:A, m:,  E, and Q A  to the equations (36) 
then (37) is restrictive for the theory (Grauel 1982a, b). 

The transport equation together with the quantities (19)-(24) can be applied to 
fluid films, interfacial fluid membranes, boundary layers, etc with the possibility of 
momentum, heat and material exchange with the surrounding media. Equation (19) 
shows that we can take into account density distributions and chemically active 
materials. By a limiting process E + 0 we obtain a closed set of boundary conditions 
for a moving boundary. This boundary can be semipermeable and chemical reactions 
can occur in the interfacial fluids. Moreover equations (36) can be applied to phase 
boundary problems and stability considerations of fluid interfaces. 
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